

Welcome to django-pagetree’s documentation!

django-pagetree is a helper for building sites that are organized
as a hierarchy of pages which the user/visitor goes through
in (depth-first) order.

The pages can then each have ‘blocks’ attached to them which
are content or interactive things.

See django-pageblocks [https://github.com/ccnmtl/django-pageblocks]
for a basic set of these blocks.

django-pagetree is designed to allow this kind of site to be built by
an editor through the web. It aims to provide the minimum amount
of functionality possible and stay out of the way as much
as possible.

	Installation

	Configuration

	Custom Pageblocks

	API
	Models

	Views

	Testing

	Glossary

Installation

You can install django-pagetree through pip:

$ pip install django-pagetree

In your project, add django-pagetree to your requirements.txt.

Add to INSTALLED_APPS in your settings.py:

'pagetree',

The PAGEBLOCKS variable in your settings.py determines which
pageblocks will be available on your site:

PAGEBLOCKS = [
 'pageblocks.TextBlock',
 'pageblocks.HTMLBlock',
]

To use these pageblocks, you’ll need to put django-pageblocks in your
requirements.txt, and add 'pageblocks' to your INSTALLED_APPS.

django-pagetree provides a set of generic views that you can use to build a
barebones site out of the box. In your urls.py, you will need to import
the generic views:

from pagetree.generic.views import PageView, EditView, InstructorView

Then add the following URL routes:

(r'^pagetree/', include('pagetree.urls')),
(r'^pages/edit/(?P<path>.*)$',
 EditView.as_view(hierarchy_name="main", hierarchy_base="/pages/"),
 {}, 'edit-page'),
(r'^pages/instructor/(?P<path>.*)$',
 InstructorView.as_view(
 hierarchy_name="main", hierarchy_base="/pages/")),
(r'^pages/(?P<path>.*)$',
 PageView.as_view(hierarchy_name="main", hierarchy_base="/pages/")),

Configuration

	PAGETREE_CUSTOM_CACHE_CLEAR

	Use this as a hook to clear any custom caches you’ve set up. It will
get called whenever Pagetree’s internal cache is called. The function
should take one argument: the Section whose cache is getting cleared.

Custom Pageblocks

You might want to define custom pageblock types specific to your application.

It’s possible to define a custom pageblock from scratch by defining a
model with all the necessary hooks and a GenericRelation to django-pagetree’s
PageBlock class. For convenience, django-pagetree provides BasePageBlock
that contains the basics you’ll need for making a custom pageblock.

Here’s an example of a custom pageblock:

from django import forms
from pagetree.generic.models import BasePageBlock

class MyBlock(BasePageBlock):
 display_name = 'My Block Name'
 template_file = 'main/my_block.html'
 css_template_file = 'main/my_block.css'
 js_template_file = 'main/my_block.js'

 @staticmethod
 def add_form():
 return MyBlockForm()

 def edit_form(self):
 return MyBlockForm(instance=self)

 @staticmethod
 def create(request):
 form = MyBlockForm(request.POST)
 return form.save()

 @classmethod
 def create_from_dict(cls, d):
 return cls.objects.create(**d)

 def edit(self, vals, files):
 form = MyBlockForm(data=vals, files=files, instance=self)
 if form.is_valid():
 form.save()

class MyBlockForm(forms.ModelForm):
 class Meta:
 model = MyBlock
 fields = '__all__'

Here’s a list of methods and properties you can override in your
BasePageBlock subclass:

API

	Models

	Views

Models

Views

Testing

It can be useful to programmatically set up a pagetree site for
testing purposes. If you have custom pageblocks that rely on
JavaScript for essential functionality, you won’t be able to test that
code with django’s built-in testing features. You can use Selenium
with Behave or Lettuce to do this kind of testing. This page shows how
to mock a version of your pagetree site in code. It can then be used
for Selenium tests or for Django-style unittests.

Here’s an example of a factory that you can put alongside
factory_boy factories:

from pagetree.tests.factories import HierarchyFactory

class CustomPagetreeModuleFactory(object):
 def __init__(self):
 hierarchy = HierarchyFactory(name='main', base_url='/pages/')
 root = hierarchy.get_root()
 root.add_child_section_from_dict({
 'label': 'Welcome to the Intro Page',
 'slug': 'intro',
 'children': [
 {
 'label': 'Step 1',
 'slug': 'step-1',
 'pageblocks': [{
 'block_type': 'Text Block'
 }]
 },
 {
 'label': 'Step 2',
 'slug': 'step-2',
 'pageblocks': [{
 'block_type': 'My Block Name'
 }]
 },
]
 })

 self.root = root

To instantiate a custom pageblock in this way, you set block_type
to the custom pageblock’s display_name property.

Then, if you’re writing a behave test, you can call this factory in
environment.py:

def before_all(context):
 CustomPagetreeModuleFactory()

And navigate the hierarchy in the feature file:

Feature: Navigate the pagetree hierarchy
 Scenario: Access custom block on Step 2
 When I visit "/pages/"
 Then I see the text "Welcome to the Intro Page"

 When I click the next button
 Then I see the text "Step 1"

 When I click the next button
 Then I see the text "Step 2"
 Then I see the text "My Block Name"

Glossary

This is a glossary of terms used in pagetree.

	section

	A “section” in pagetree refers to a node in the tree. A section can
be thought of as a page in your hierarchy. Keep in mind that each
section can contain any number of child sections.

	locked / unlocked

	If a section is “locked”, that means the user can’t navigate past it
with the “next” button.

	gating / is_gated

	Gating is a feature that prevents users from visiting a section if
they haven’t visited all the preceding sections. If a pagetree site
is “gated” and you try to visit a section in the middle of the tree
with a new user, you will be redirected to the first node (or
“section”) in the tree.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-pagetree’s documentation!

 		
 Installation

 		
 Configuration

 		
 Custom Pageblocks

 		
 API

 		
 Models

 		
 Views

 		
 Testing

 		
 Glossary

_static/up.png

_static/up-pressed.png

